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Recap

• Last time we talked about supervised learning with the example of 
linear regression.

• Models have parameters, ϕ, that we want to choose for a best 
possible mapping between input and output training data

• A loss function or cost function, L[ϕ], returns a single number that 
describes a mismatch between f[xi, ϕ]and the ground truth 
outputs, yi.
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Plan for Today

• Use cases for loss functions
• Maximum likelihood approach
• Deriving common loss functions

• Real-valued univariate regression
• Binary classification
• Multiclass classification
• Multiple outputs (if extra time)

• Connections to cross entropy (if extra time)
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How do we choose a loss function?



Univariate and Multivariate Regression

Depth Map
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Binary Classification
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Multiclass Classification
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So far, we thought about 
fitting a model to the 
data…
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Plan for Today

• Use cases for loss functions
• Maximum likelihood approach
• Deriving common loss functions

• Real-valued univariate regression
• Binary classification
• Multiclass classification
• Multiple outputs (if extra time)

• Connections to cross entropy (if extra time)



Competing Takes on Loss Functions

1. How bad are my model estimates on average?
• Model predicts a specific value.
• Loss function compares that value to the ground truth.

2. How likely did my model think the actual result was?
• Model predicts a probability distribution.
• Loss function checks likelihood of ground truth from that distribution.



Suppose we fit a probability 
model to this data, and outputs 
conditional probability 
distribution

Pr(𝑦|𝑥 = 2.8)

Isn’t this a better fit for the 
reality?
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Probability Approach Suggests
Maximum Likelihood Estimation
• In statistics, maximum likelihood estimation (MLE) is a method of 

estimating the parameters of an assumed probability distribution, 
given some observed data. 

• This is achieved by maximizing a likelihood function so that, under the 
assumed statistical model, the observed data is most probable.

• This will directly suggest choices of loss functions.
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How do we do this?

• Model predicts a conditional probability distribution:

Pr(𝒚|𝒙)

   over outputs 𝒚 given inputs 𝒙.

• Define and minimize a loss function that makes the outputs have 
high probability.
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How can a model predict a probability 
distribution? ➔ Parametric Models
1. Pick a known distribution (e.g., normal distribution) to model output y 

with parameters 𝜃.
 e.g., the normal distribution 𝜃 = {𝜇, 𝜎2}

2.  Use model to predict parameters 𝜃 of probability distribution.
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Maximize the joint, conditional probability

• We know we picked a good model and the right 
parameters when the joint conditional probability is high 
for the observed (e.g. training) data.

Pr 𝑦1, 𝑦2, … , 𝑦𝐼 𝑥1, 𝑥2, … , 𝑥𝐼)
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Two simplifying assumptions

Pr 𝑦1, 𝑦2, … , 𝑦𝐼 𝑥1, 𝑥2, … , 𝑥𝐼) = ෑ

𝑖=1

𝐼

Pr 𝑦𝑖 𝑥𝑖)

Identically distributed (the form of 
the probably distribution is the 
same for each input/output pair)

Independent 

Independent and identically distributed (i.i.d) 16



Maximum likelihood criterion

When we consider this probability as a function of the 
parameters 𝜙, we call it a likelihood.

𝜃𝑖are the parameters of the 
probability distribution

𝜙 are the parameters of the 
neural network, e.g.

𝜃𝑖 = f[x𝑖 , 𝜙]
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Practical Problem:

• The terms in this product might all be small, 0 ≤ Pr ⋅ ≤ 1

• The product might get so small that we can’t easily represent it in 
fixed precision arithmetic
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The log function is monotonic

Maximum of the logarithm of a function is in the same place as maximum of 
function 
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Maximum log likelihood

Now it’s a sum of terms, so doesn’t matter so much if the terms are small 
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Minimizing negative log likelihood

• By convention, we minimize things (i.e., a loss)
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Inference

• But now we predict a probability distribution
• We need an actual prediction (point estimate)
• Find the peak of the probability distribution (i.e., mean for normal)

ො𝑦 = Ƹ𝜇 =  argmax
𝑦

[Pr 𝑦 𝐟 𝐱, 𝜙 )]]
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Recipe for loss functions

23



Plan for Today

• Use cases for loss functions
• Maximum likelihood approach
• Deriving common loss functions

• Real-valued univariate regression
• Binary classification
• Multiclass classification
• Multiple outputs (if extra time)

• Connections to cross entropy (if extra time)
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Example 1: univariate regression
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Example 1:  univariate regression

• Predict scalar output:
• Sensible probability 

distribution: 
• Normal distribution
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Example 1:  univariate regression

In this case, 
just the mean

Just learn the mean, 𝜇, and assume the variance is fixed,.
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Example 1:  univariate regression

28



29



30



31

log exp 𝑥 = 𝑥



Just a constant 
offset
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Just dividing by a 
positive constant
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Least squares!
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Least squares Negative log likelihood
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Least squares Maximum likelihood
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Example 1:  univariate regression

ො𝑦 = Ƹ𝜇 = f x 𝜙] 

Full distribution:

Max probability:
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Estimating variance

• Perhaps surprisingly, the variance term disappeared:
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Estimating variance

• But we could learn it during training:

• Do gradient descent on both model parameters, 𝜙, and the 
variance, 𝜎2

𝜕𝐿

𝜕𝜙
  and 𝜕𝐿

𝜕𝜎2
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Heteroscedastic regression
• We were assuming that the noise 𝜎2 is the same everywhere 

(homoscedastic).
• But we could make the noise a function of the data x.
• Build a model with two outputs:
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Squared to ensure it 
is positive



Heteroscedastic regression
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fixed 𝜎



Example 1: Univariate Regression Takeaways

• Least squares loss is a good choice assuming conditional 
distributions are normal distributions.

• The best prediction is the predicted mean.
• We can also estimate global or local variance.
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Plan for Today

• Use cases for loss functions
• Maximum likelihood approach
• Deriving common loss functions

• Real-valued univariate regression
• Binary classification
• Multiclass classification
• Multiple outputs (if extra time)

• Connections to cross entropy (if extra time)
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Example 2: binary classification

• Goal: predict which of two classes                     the input x belongs to

45



Example 2: binary classification

• Domain:
• Bernoulli distribution
• One parameter 𝜆 ∈ [0, 1]
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Example 2: binary classification

Problem:  
• Output of most models can be anything
• Parameter 𝜆 ∈ [0,1]

Solution:
• Pass through function that maps 

“anything” to [0,1]

47



Example 2: binary classification

Problem:  
• Output of neural network can be anything
• Parameter 𝜆 ∈[0,1]

Solution:
• Pass through logistic sigmoid function 

that maps “anything to [0,1]:
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Example 2: binary classification
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Example 2: binary classification
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Example 2: binary classification

Also called binary cross-entropy loss as it is result 
from cross-entropy loss calculation – discussed 
later.
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Example 2: binary classification

Choose 𝑦 = 1 where 𝜆 is greater than 0.5, otherwise 0
And we get a probability estimate! 52



Example 2: Binary Classification Takeaways

• Binary cross entropy loss as the loss function
• Threshold to get prediction
• We also get a probability or “confidence value”
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Plan for Today

• Use cases for loss functions
• Maximum likelihood approach
• Deriving common loss functions

• Real-valued univariate regression
• Binary classification
• Multiclass classification
• Multiple outputs (if extra time)

• Connections to cross entropy (if extra time)

54



Example 3: multiclass classification

Goal: predict which of K classes 𝑦 ∈ 1, 2, … , 𝐾  the input x belongs to.

55



Example 3: multiclass classification 

• Domain:
• Categorical distribution
• 𝐾 parameters 𝜆𝑘 ∈ [0, 1]

• σ𝑘 𝜆𝑘 = 1
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Example 3: multiclass classification 

Problem:  
• Output of neural network can be anything
• Parameters 𝜆𝑘 ∈[0,1], sum to one

Solution:
• Pass through function that maps 

“anything” to [0,1] and sums to one
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Example 3: multiclass classification
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Example 3:  multiclass classification

*Multiclass cross-entropy loss* 59



Example 3:  multiclass classification

0

1.0

1 2 3

Choose the class with the largest probability
We also get probability or “confidence”
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Plan for Today

• Use cases for loss functions
• Maximum likelihood approach
• Deriving common loss functions

• Real-valued univariate regression
• Binary classification
• Multiclass classification
• Multiple outputs (if extra time)

• Connections to cross entropy (if extra time)
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Multiple outputs
• Treat each output 𝑦𝑑  as independent:

 where 𝐟𝑑[𝐱, 𝜙] is the 𝑑𝑡ℎ  set of network outputs

• Negative log likelihood becomes sum of terms:

62
𝑑𝑡ℎoutput of the 𝑖𝑡ℎ training example



Example 4: multivariate regression
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Example 4: multivariate regression

• Goal:  to predict a multivariate target
• Solution treat each dimension independently

• Make network with 𝐷𝑜 outputs to predict means
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Example 4: multivariate regression

• What if the outputs vary in magnitude
• E.g., predict weight in kilos and height in meters
• One dimension has much bigger numbers than others

• Could learn a separate variance for each…
• …or rescale before training, and then rescale output in opposite 

way
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Plan for Today

• Use cases for loss functions
• Maximum likelihood approach
• Deriving common loss functions

• Real-valued univariate regression
• Binary classification
• Multiclass classification
• Multiple outputs (if extra time)

• Connections to cross entropy (if extra time)
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Cross-entropy loss

• So far we defined loss functions that minimize negative log-
likelihood.

• Cross-entropy loss is common in neural network training.

• We can show that it is equivalent to negative log-likelihood

67

One can approach problems from different mathematical 
formulations.



Information Theory and Entropy
• Claude Shannon: the "father of information theory," 

was an American mathematician, electrical engineer, 
and cryptographer

• Theory of Communication: In his landmark 1948 
paper, "A Mathematical Theory of Communication," 
Shannon introduced a formal framework for the 
transmission, processing, and storage of information.

• Information Theory: Quantified information, allowing 
for the measurement of information content in 
messages, which is crucial for data compression, error 
detection and correction, and more.

• Concept of Information Entropy: introduced entropy 
as a measure of the uncertainty or randomness in a set 
of possible messages, providing a limit on the best 
possible lossless compression of any communication.
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𝐻 𝑥 = − ෍

𝑥

𝑃 𝑥  log2(𝑃 𝑥 ) 



Entropy is a measure of surprise or uncertainty
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Randomly pick a ball from the box

Low or High 
Entropy?

Low or High 
Entropy?

B
ox

 A

B
ox

 B
In class poll: https://piazza.com/class/m5v834h9pcatx/post/27 

https://piazza.com/class/m5v834h9pcatx/post/27


Connection to Deep Learning
Cross-Entropy Loss
• If a neural network predicts (0.25, 0.25, 0.25, 0.25) for four 

possible classes, high entropy → uncertain.
• If it predicts (0.99, 0.01, 0, 0), low entropy → confident.

Regularization & Overfitting
• A high-entropy model makes diverse predictions → good for 

exploration.
• A low-entropy model could be overconfident → might overfit.

70
“Raise the temperature in LLMs.”



Entropy for a Binary Event

71

𝐻 𝑥 = − ෍

𝑥

𝑃 𝑥  log2 𝑃 𝑥 = −𝑝 log2 𝑝 − 1 − 𝑝 log2(1 − 𝑝)

𝑥 ∈ {0,1}

Peaks at 50/50.



Cross Entropy – Concept from Information Theory

Kullback-Leibler Divergence -- a measure between probability distributions
72

Measures the difference between the empirical distribution, 𝑞 𝑦 ,  and 
a model distribution, Pr(𝑦|𝜃) .

𝑞(𝑦) 𝑃𝑟(𝑦|𝜽)



Empirical Distribution – Collection of samples
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𝑞
(𝑦

)

Each sample represented by a shifted Dirac 
delta function.

න 𝛿[𝑥 − 𝑥0]𝑑𝑥 = 1

න 𝑓[𝑥] 𝛿[𝑥 − 𝑥0] 𝑑𝑥 = 𝑓[𝑥0]

So, we say empirical distribution is

𝑞 𝑦 =
1

𝐼
෍

𝑖=1

𝐼

𝛿[ 𝑦 − 𝑦𝑖]

which will be helpful formulation in a moment.

𝑦



Kullback-Leibler (KL) divergence
How much a model distribution, 𝑄, is different from a true 
probability distribution, 𝑃.

𝐷𝐾𝐿[𝑞 𝑧 ∥ 𝑝 𝑧 ] = න 𝑞 𝑧 log
𝑞(𝑧)

𝑝(𝑧)
𝑑𝑧

= න
−∞

∞

𝑞(𝑧)  𝑙𝑜𝑔[𝑞 𝑧 ]  − 𝑞 𝑧 𝑙𝑜𝑔[𝑝(𝑧)]𝑑𝑧

74KL Divergence: 0.4431Interactive Colab Notebook 

https://colab.research.google.com/github/DL4DS/sp2025_homeworks/blob/main/lecture_collateral/kl_divergence.ipynb


Derivation

75

Training dataset as collection of 
Dirac delta functions.



Derivation
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Training dataset as collection of 
Dirac delta functions.

Minimize KL divergence.



Derivation
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1st term not dependent on 𝜃.

Training dataset as collection of 
Dirac delta functions.

Minimize KL divergence.



Derivation
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1st term not dependent on 𝜃.

Substituting for 𝑞(𝑦).

Training dataset as collection of 
Dirac delta functions.

Minimize KL divergence.



Derivation

79

1st term not dependent on 𝜃.

Substituting for 𝑞(𝑦).

Property of the Dirac delta function.

Training dataset as collection of 
Dirac delta functions.

Minimize KL divergence.



Derivation

80

1st term not dependent on 𝜃.

Substituting for 𝑞(𝑦).

Property of the Dirac delta function.

Τ1
𝐼 is just a constant, so ignore.

Training dataset as collection of 
Dirac delta functions.

Minimize KL divergence.



Derivation

81

1st term not dependent on 𝜃.

Substituting for 𝑞(𝑦).

Property of the Dirac delta function.

Τ1
𝐼 is just a constant, so ignore.

Model is predicting 𝜃 ➔  Negative Log 
Likelihood!!

Training dataset as collection of 
Dirac delta functions.

Minimize KL divergence.



Minimizing Negative Log Likelihood
(or equivalently KL Divergence)
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෠𝜙 = argmin
𝜙

− ෍

𝑖=1

𝐼

log Pr y𝑖 f x𝑖 , 𝜙 )  

 =  argmin
𝜙

𝐿 𝜙
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