

Deep Learning for Data Science DS 542

https://dl4ds.github.io/fa2025/

Loss Functions

Recap

- Last time we talked about supervised learning with the example of linear regression.
- Models have parameters, φ, that we want to choose for a best possible mapping between input and output training data
- A loss function or cost function, $L[\varphi]$, returns a single number that describes a mismatch between $f[x_i, \varphi]$ and the ground truth outputs, y_i .

Plan for Today

- Use cases for loss functions
- Maximum likelihood approach
- Deriving common loss functions
 - Real-valued univariate regression
 - Binary classification
 - Multiclass classification
 - Multiple outputs (if extra time)
- Connections to cross entropy (if extra time)

How do we choose a loss function?

Univariate and Multivariate Regression

Binary Classification

Multiclass Classification

So far, we thought about fitting a model to the data...

Plan for Today

- Use cases for loss functions
- Maximum likelihood approach
- Deriving common loss functions
 - Real-valued univariate regression
 - Binary classification
 - Multiclass classification
 - Multiple outputs (if extra time)
- Connections to cross entropy (if extra time)

Competing Takes on Loss Functions

- 1. How bad are my model estimates on average?
 - Model predicts a specific value.
 - Loss function compares that value to the ground truth.

- 2. How likely did my model think the actual result was?
 - Model predicts a probability distribution.
 - Loss function checks likelihood of ground truth from that distribution.

Suppose we fit a *probability model* to this data, and outputs conditional probability distribution

$$Pr(y|x = 2.8)$$

Isn't this a better fit for the reality?

Probability Approach Suggests Maximum Likelihood Estimation

- In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.
- This is achieved by *maximizing a likelihood function* so that, under the assumed statistical model, *the observed data is most probable*.

This will directly suggest choices of loss functions.

How do we do this?

• Model predicts a conditional probability distribution:

over outputs y given inputs x.

• Define and minimize a loss function that makes the outputs have high probability.

How can a model predict a probability distribution? → Parametric Models

1. Pick a known distribution (e.g., normal distribution) to model output y with parameters θ .

e.g., the normal distribution $\theta = \{\mu, \sigma^2\}$

2. Use model to predict parameters θ of probability distribution.

Maximize the joint, conditional probability

 We know we picked a good model and the right parameters when the joint conditional probability is high for the observed (e.g. training) data.

$$Pr(y_1, y_2, ..., y_I | x_1, x_2, ..., x_I)$$

Two simplifying assumptions

Identically distributed (the form of the probably distribution is the same for each input/output pair)

$$\Pr(y_1, y_2, ..., y_I | x_1, x_2, ..., x_I) = \prod_{i=1}^{I} \Pr(y_i | x_i)$$
Independent

Maximum likelihood criterion

parameters ϕ , we call it a likelihood.

$$\hat{\phi} = \operatorname*{argmax} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i|\mathbf{x}_i)\right] \qquad \theta_i \text{ are the parameters of the probability distribution}$$

$$= \operatorname*{argmax} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i|\boldsymbol{\theta}_i)\right] \qquad \phi \text{ are the parameters of the neural network, e.g.}$$

$$\boldsymbol{\theta}_i = \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]$$
 When we consider this probability as a function of the

Practical Problem:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right]$$

- The terms in this product might all be small, $0 \le \Pr(\cdot) \le 1$
- The product might get so small that we can't easily represent it in fixed precision arithmetic

The log function is monotonic

Maximum of the logarithm of a function is in the same place as maximum of function

Maximum log likelihood

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\log \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

Now it's a sum of terms, so doesn't matter so much if the terms are small

Minimizing negative log likelihood

• By convention, we minimize things (i.e., a loss)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right]$$

Inference

- But now we predict a probability distribution
- We need an actual prediction (point estimate)
- Find the peak of the probability distribution (i.e., mean for normal)

$$\hat{y} = \hat{\mu} = \underset{y}{\operatorname{argmax}} [\Pr(y | \mathbf{f}[\mathbf{x}, \phi])]]$$

Recipe for loss functions

- 1. Choose a suitable probability distribution $Pr(\mathbf{y}|\boldsymbol{\theta})$ that is defined over the domain of the predictions \mathbf{y} and has distribution parameters $\boldsymbol{\theta}$.
- 2. Set the machine learning model $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])$.
- 3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]. \tag{5.7}$$

4. To perform inference for a new test example \mathbf{x} , return either the full distribution $Pr(\mathbf{y}|\mathbf{f}[\mathbf{x},\hat{\boldsymbol{\phi}}])$ or the maximum of this distribution.

Plan for Today

- Use cases for loss functions
- Maximum likelihood approach
- Deriving common loss functions
 - Real-valued univariate regression
 - Binary classification
 - Multiclass classification
 - Multiple outputs (if extra time)
- Connections to cross entropy (if extra time)

- 1. Choose a suitable probability distribution $Pr(\mathbf{y}|\boldsymbol{\theta})$ that is defined over the domain of the predictions \mathbf{y} and has distribution parameters $\boldsymbol{\theta}$.
- ullet Predict scalar output $y\in\mathbb{R}$
- Sensible probability distribution:
 - Normal distribution

$$Pr(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$$

2. Set the machine learning model $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])$.

$$Pr(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$$
 In this case, just the mean
$$Pr(y|\mathbf{f}[\mathbf{x},\boldsymbol{\phi}],\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mathbf{f}[\mathbf{x},\boldsymbol{\phi}])^2}{2\sigma^2}\right]$$

Just learn the mean, μ , and assume the variance is fixed,.

3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$L[\phi] = -\sum_{i=1}^{I} \log \left[Pr(y_i | f[\mathbf{x}_i, \phi], \sigma^2) \right]$$
$$= -\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right]$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$\log[a \cdot b] = \log[a] + \log[b]$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

 $\log[\exp[x]] = x$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

Just a constant offset

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$\begin{split} \hat{\phi} &= \operatorname*{argmin}_{\phi} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right] \\ &= \operatorname*{argmin}_{\phi} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right] \\ &= \operatorname*{argmin}_{\phi} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \\ &= \operatorname*{argmin}_{\phi} \left[-\sum_{i=1}^{I} -\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \end{split}$$

Just dividing by a positive constant

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} (y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2 \right], \quad \longleftarrow \quad \text{Least squares!}$$

Least squares

Negative log likelihood

Least squares

Ь) $\sum_{i} (y_i - f[x_i, \phi])^2 = 10.22$ 0.0 Input, x

Maximum likelihood

Example 1: univariate regression

4. To perform inference for a new test example \mathbf{x} , return either the full distribution $Pr(\mathbf{y}|\mathbf{f}|\mathbf{x},\hat{\boldsymbol{\phi}}|)$ or the maximum of this distribution.

Full distribution:

Full distribution:
$$Pr(y|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])^2}{2\sigma^2}\right] \qquad \text{Solution}$$

Max probability:

$$\hat{y} = \hat{\mu} = f[x | \phi]$$

Estimating variance

• Perhaps surprisingly, the variance term disappeared:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} (y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2 \right]$$

Estimating variance

But we could learn it during training:

$$\hat{\boldsymbol{\phi}}, \hat{\sigma}^2 = \underset{\boldsymbol{\phi}, \sigma^2}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

• Do gradient descent on both model parameters, ϕ , and the variance, σ^2

$$\frac{\partial L}{\partial \phi}$$
 and $\frac{\partial L}{\partial \sigma^2}$

Heteroscedastic regression

- We were assuming that the noise σ^2 is the same everywhere (homoscedastic).
- But we could make the noise a function of the data x.
- Build a model with two outputs:

$$\mu = f_1[\mathbf{x}, \phi]$$
 Squared to ensure it is positive

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi f_2[\mathbf{x}_i, \boldsymbol{\phi}]^2}} \right] - \frac{(y_i - f_1[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2f_2[\mathbf{x}_i, \boldsymbol{\phi}]^2} \right]$$

Heteroscedastic regression

Example 1: Univariate Regression Takeaways

- Least squares loss is a good choice assuming conditional distributions are normal distributions.
- The best prediction is the predicted mean.
- We can also estimate global or local variance.

Plan for Today

- Use cases for loss functions
- Maximum likelihood approach
- Deriving common loss functions
 - Real-valued univariate regression
 - Binary classification
 - Multiclass classification
 - Multiple outputs (if extra time)
- Connections to cross entropy (if extra time)

• Goal: predict which of two classes $\in \{0,1\}$ the input x belongs to

- 1. Choose a suitable probability distribution $Pr(\mathbf{y}|\boldsymbol{\theta})$ that is defined over the domain of the predictions \mathbf{y} and has distribution parameters $\boldsymbol{\theta}$.
- Domain: $y \in \{0, 1\}$
- Bernoulli distribution
- One parameter $\lambda \in [0, 1]$

$$Pr(y|\lambda) = \begin{cases} 1 - \lambda & y = 0\\ \lambda & y = 1 \end{cases}$$

or

$$Pr(y|\lambda) = (1-\lambda)^{1-y} \cdot \lambda^y$$

2. Set the machine learning model $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])$.

Problem:

- Output of most models can be anything
- Parameter $\lambda \in [0,1]$

Solution:

 Pass through function that maps "anything" to [0,1]

2. Set the machine learning model $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])$.

Problem:

- Output of neural network can be anything
- Parameter $\lambda \in [0,1]$

Solution:

 Pass through logistic sigmoid function that maps "anything to [0,1]:

$$\operatorname{sig}[z] = \frac{1}{1 + \exp[-z]}$$

2. Set the machine learning model $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])$.

$$Pr(y|\lambda) = (1-\lambda)^{1-y} \cdot \lambda^y$$

$$Pr(y|\mathbf{x}) = (1 - \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]])^{1-y} \cdot \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]]^y$$

3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]. \tag{5.7}$$

$$Pr(y|\mathbf{x}) = (1 - \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]])^{1-y} \cdot \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]]^y$$

$$L[\boldsymbol{\phi}] = \sum_{i=1}^{I} -(1 - y_i) \log \left[1 - \operatorname{sig}[f[\mathbf{x}_i | \boldsymbol{\phi}]]\right] - y_i \log \left[\operatorname{sig}[f[\mathbf{x}_i | \boldsymbol{\phi}]]\right]$$

Also called binary cross-entropy loss as it is result from cross-entropy loss calculation – discussed later.

4. To perform inference for a new test example \mathbf{x} , return either the full distribution $Pr(\mathbf{y}|\mathbf{f}[\mathbf{x},\hat{\boldsymbol{\phi}}])$ or the maximum of this distribution.

Choose y = 1 where λ is greater than 0.5, otherwise 0 And we get a probability estimate!

Example 2: Binary Classification Takeaways

- Binary cross entropy loss as the loss function
- Threshold to get prediction
- We also get a probability or "confidence value"

Plan for Today

- Use cases for loss functions
- Maximum likelihood approach
- Deriving common loss functions
 - Real-valued univariate regression
 - Binary classification
 - Multiclass classification
 - Multiple outputs (if extra time)
- Connections to cross entropy (if extra time)

Goal: predict which of K classes $y \in \{1, 2, ..., K\}$ the input x belongs to.

- 1. Choose a suitable probability distribution $Pr(\mathbf{y}|\boldsymbol{\theta})$ that is defined over the domain of the predictions \mathbf{y} and has distribution parameters $\boldsymbol{\theta}$.
- Domain: $y \in \{1, 2, ..., K\}$
- Categorical distribution
- K parameters $\lambda_k \in [0,1]$
- $\sum_k \lambda_k = 1$

$$Pr(y=k)=\lambda_k$$

2. Set the machine learning model $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])$.

Problem:

- Output of neural network can be anything
- Parameters $\lambda_k \in [0,1]$, sum to one

$$\operatorname{softmax}_{k}[\mathbf{z}] = \frac{\exp[z_{k}]}{\sum_{k'=1}^{K} \exp[z_{k'}]}$$

Solution:

 Pass through function that maps "anything" to [0,1] and sums to one

$$Pr(y = k|\mathbf{x}) = \operatorname{softmax}_k[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]]$$

$$Pr(y = k|\mathbf{x}) = \operatorname{softmax}_k[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]]$$

3. To train the model, find the network parameters ϕ that minimize the negative log-likelihood loss function over the training dataset pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]. \tag{5.7}$$

$$L[\boldsymbol{\phi}] = -\sum_{i=1}^{I} \log \left[\operatorname{softmax}_{y_i} \left[\mathbf{f} \left[\mathbf{x}_i, \boldsymbol{\phi} \right] \right] \right] \qquad \operatorname{softmax}_{k}[\mathbf{z}] = \frac{\exp[z_k]}{\sum_{k'=1}^{K} \exp[z_{k'}]}$$

$$= -\sum_{i=1}^{I} f_{y_i} \left[\mathbf{x}_i, \boldsymbol{\phi} \right] - \log \left[\sum_{k=1}^{K} \exp \left[f_k \left[\mathbf{x}_i, \boldsymbol{\phi} \right] \right] \right]$$

4. To perform inference for a new test example \mathbf{x} , return either the full distribution $Pr(\mathbf{y}|\mathbf{f}[\mathbf{x},\hat{\boldsymbol{\phi}}])$ or the maximum of this distribution.

Choose the class with the largest probability We also get probability or "confidence"

Plan for Today

- Use cases for loss functions
- Maximum likelihood approach
- Deriving common loss functions
 - Real-valued univariate regression
 - Binary classification
 - Multiclass classification
 - Multiple outputs (if extra time)
- Connections to cross entropy (if extra time)

Multiple outputs

• Treat each output y_d as independent:

$$Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) = \prod_d Pr(y_d|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}])$$

where $\mathbf{f}_d[\mathbf{x}, \phi]$ is the d^{th} set of network outputs

Negative log likelihood becomes sum of terms:

$$L[\boldsymbol{\phi}] = -\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] = -\sum_{i=1}^{I} \sum_{d} \log \left[Pr(y_{id}|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}]) \right]$$

Example 4: multivariate regression

Example 4: multivariate regression

- ullet Goal: to predict a multivariate targety $\in \mathbb{R}^{D_o}$
- Solution treat each dimension independently

$$Pr(\mathbf{y}|\boldsymbol{\mu}, \sigma^2) = \prod_{d=1}^{D_o} Pr(y_d|\mu_d, \sigma^2)$$
$$= \prod_{d=1}^{D_o} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_d - \mu_d)^2}{2\sigma^2}\right]$$

• Make network with D_o outputs to predict means

$$Pr(\mathbf{y}|\mathbf{f}[\mathbf{x},\boldsymbol{\phi}],\sigma^2) = \prod_{d=1}^{D_o} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_d - f_d[\mathbf{x},\boldsymbol{\phi}])^2}{2\sigma^2}\right]$$

Example 4: multivariate regression

- What if the outputs vary in magnitude
 - E.g., predict weight in kilos and height in meters
 - One dimension has much bigger numbers than others
- Could learn a separate variance for each...
- ...or rescale before training, and then rescale output in opposite way

Plan for Today

- Use cases for loss functions
- Maximum likelihood approach
- Deriving common loss functions
 - Real-valued univariate regression
 - Binary classification
 - Multiclass classification
 - Multiple outputs (if extra time)
- Connections to cross entropy (if extra time)

Cross-entropy loss

 So far we defined loss functions that minimize negative loglikelihood.

Cross-entropy loss is common in neural network training.

We can show that it is equivalent to negative log-likelihood

One can approach problems from different mathematical formulations.

Information Theory and Entropy

- Claude Shannon: the "father of information theory," was an American mathematician, electrical engineer, and cryptographer
- Theory of Communication: In his landmark 1948 paper, "A Mathematical Theory of Communication," Shannon introduced a formal framework for the transmission, processing, and storage of information.
- Information Theory: Quantified information, allowing for the measurement of information content in messages, which is crucial for data compression, error detection and correction, and more.
- Concept of Information Entropy: introduced entropy as a measure of the uncertainty or randomness in a set of possible messages, providing a limit on the best possible lossless compression of any communication.

 $H(x) = -\sum_{x} P(x) \log_2(P(x))$

Entropy is a measure of surprise or uncertainty

Randomly pick a ball from the box

In class poll: https://piazza.com/class/m5v834h9pcatx/post/27

Connection to Deep Learning

Cross-Entropy Loss

- If a neural network predicts (0.25, 0.25, 0.25, 0.25) for four possible classes, high entropy → uncertain.
- If it predicts (0.99, 0.01, 0, 0), low entropy → confident.

Regularization & Overfitting

- A high-entropy model makes diverse predictions → good for exploration.
- A low-entropy model could be overconfident → might overfit.

Entropy for a Binary Event $x \in \{0,1\}$

Peaks at 50/50.

$$H(x) = -\sum_{x} P(x) \log_2(P(x)) = -p \log_2(p) - (1-p) \log_2(1-p)$$

Cross Entropy – Concept from Information Theory

Measures the difference between the empirical distribution, q(y), and a model distribution, $\Pr(y|\theta)$.

Kullback-Leibler Divergence -- a measure between probability distributions

Empirical Distribution – Collection of samples

Each sample represented by a shifted Dirac delta function.

$$\int \delta[x - x_0] dx = 1$$

$$\int f[x] \, \delta[x - x_0] \, dx = f[x_0]$$

So, we say empirical distribution is

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$$

which will be helpful formulation in a moment.

Kullback-Leibler (KL) divergence

How much a model distribution, Q, is different from a true probability distribution, P.

$$D_{KL}[q(z) \parallel p(z)] = \int q(z) \log \frac{q(z)}{p(z)} dz$$

$$= \int_{-\infty}^{\infty} q(z) \log[q(z)] - q(z) \log[p(z)] dz$$

Interactive Colab Notebook

KL Divergence: 0.4431

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i], \quad \tilde{\xi}$$

Training dataset as collection of Dirac delta functions.

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i], \quad \hat{\mathbb{R}}$$

Training dataset as collection of Dirac delta functions.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log[q(y)] dy - \int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$

Minimize KL divergence.

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i], \quad \widehat{\xi}$$

a) Empirical data distribution
$$(z)_{L}$$

Training dataset as collection of Dirac delta functions.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log[q(y)] dy - \int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$
 Minimize KL divergence.
$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right],$$
 1st term not dependent on $\boldsymbol{\theta}$.

1st term not dependent on heta .

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i], \quad \tilde{\zeta}$$

a) Empirical data distribution
$$(z) L d = (z) L d = (z)$$

Training dataset as collection of Dirac delta functions.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log \left[q(y) \right] dy - \int_{-\infty}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right]$$
 Minimize KL divergence.
$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[- \int_{-\infty}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right],$$
 1st term not dependent on $\boldsymbol{\theta}$.

1st term not dependent on θ .

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$
 Substituting for $q(y)$.

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i], \quad \overset{\circ}{\beta}$$

Training dataset as collection of Dirac delta functions.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log \left[q(y) \right] dy - \int_{-\infty}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right]$$
 Minimize KL divergence.

1st term not dependent on θ .

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right],$$

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$
 Substituting for $q(y)$.

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\frac{1}{I} \sum_{i=1}^{I} \log [Pr(y_i | \boldsymbol{\theta})] \right]$$
 Property of the Dirac delta function.

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i], \quad \stackrel{\text{R}}{=}$$

Training dataset as collection of Dirac delta functions.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log \left[q(y) \right] dy - \int_{-\infty}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right]$$
 Minimize KL divergence.

 $= \operatorname{argmin} \left[-\int_{0}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right],$ 1st term not dependent on $\boldsymbol{\theta}$.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$
 Substituting for $q(y)$.

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\frac{1}{I} \sum_{i=1}^{I} \log [Pr(y_i | \boldsymbol{\theta})] \right]$$
 Property of the Dirac delta function.

=
$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(y_i | \boldsymbol{\theta}) \right] \right]$$
. $\frac{1}{I}$ is just a constant, so ignore.

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i], \quad \stackrel{\text{\tiny (2)}}{\overleftarrow{\mathbb{A}}}$$

a) Empirical data distribution
$$(z)$$
 \dot{z} \dot{z}

Training dataset as collection of Dirac delta functions.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log \big[q(y) \big] dy - \int_{-\infty}^{\infty} q(y) \log \big[Pr(y|\boldsymbol{\theta}) \big] dy \right] \quad \text{Minimize KL divergence.}$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log \left[Pr(y|\boldsymbol{\theta}) \right] dy \right],$$
 1st term not dependent on $\boldsymbol{\theta}$.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$
 Substituting for $q(y)$.

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\frac{1}{I} \sum_{i=1}^{I} \log [Pr(y_i | \boldsymbol{\theta})] \right]$$
 Property of the Dirac delta function.

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log [Pr(y_i|\boldsymbol{\theta})] \right]. \qquad {}^{1}\!/_{I} \text{ is just a constant, so ignore.}$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(y_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]$$

Model is predicting $\theta \rightarrow \text{Negative Log}$ Likelihood!!

Minimizing Negative Log Likelihood (or equivalently KL Divergence)

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log[\Pr(y_i | f[x_i, \phi])] \right]$$

$$= \underset{\phi}{\operatorname{argmin}} [L[\phi]]$$